martes, 24 de noviembre de 2009

DISTRIBUCION BINOMIAL-evidencia 5

Obtenga la distribución de Bernoulli si se tiran a lo más 8 lanzamientos de una moneda.
Datos: Formula:
X = 0 a 8 f(x)=nCx P^x q^(n-x)
n = 8
P = ½ = 50% = 0.5
q = 0.5
Sustitución:
F (0)= 8C0 (0.5)^0 〖(0.5)〗^(8-0)
=1(1) (3.90625x〖10〗^(-3))
=3.90625x〖10〗^(-3)̡
F (1)= 8C1 (0.5)^1 〖(0.5)〗^(8-1)
=8(.5) (7.8125x〖10〗^(-3))
=0.03125̡

F (2)= 8C2 (0.5)^2 〖(0.5)〗^(8-2)
=28 (0.25) (0.015625)
=0.10993375̡

F (3)= 8C3 (0.5)^3 〖(0.5)〗^(8-3)
= 56 (0.125) (0.03125)
= 0.21875̡

F (4)= 8C4 (0.5)^4 〖(0.5)〗^(8-4)
=70 (0.0625) (0.0625)
=0.2734375̡
F (5)= 8C5 (0.5)^5 〖(0.5)〗^(8-5)
=56 (0.03125) (0.125)
=0.221875̡
F (6)= 8C6 (0.5)^6 〖(0.5)〗^(8-6)
=28 (0.15625) (0.25)
=0.109375̡

F (7)= 8C7 (0.5)^7 〖(0.5)〗^(8-7)
=8 (7.8125x〖10〗^(-3)) (0.5)
=0.03125̡

F (8)= 8C8 (0.5)^8 〖(0.5)〗^(8-8)
=1 (3.90625x〖10〗^(-3)) (1)
= (3.90625x〖10〗^(-3)) ̡
∑P=1x100= 100%

No hay comentarios:

Publicar un comentario